有機污水處理工藝技術介紹
在生物處理中,廢水中的有機物作為微生物的營養源被微生物利用,最終分解為穩定的無機物或合成細胞物質而以污泥物態由水中分離,從而使廢水得到凈化。在好氧處理工藝中,微生物通過利用氧氣將有機污染物氧化為CO2和微生物的細胞物質(污泥)。隨著氧化分解過程,大量能量被釋放,用于微生物降解有機物轉化為細胞物質,即好氧污泥;而厭氧處理工藝則是在無氧的條件下,大多數有機污染物的能量轉化為甲烷的形式,結果只有很少部分用于合成細胞物質,而產生的沼氣可作為熱能被再利用。因此從生物反應的原理上,顯而易見,厭氧處理存在很大的優勢。
整個厭氧過程分為水解、發酵、產乙酸產氫階段、產甲烷階段。
1.水解階段
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。因此它們在第一階段被細菌胞外酶分解為小分子。例如纖維素被纖維素酶水解為纖維二糖與葡萄糖,淀粉被淀粉酶分解麥芽糖和葡萄糖,蛋白質被蛋白酶分解為短肽與氨基酸等。這些小分子的水解產物能夠溶解于水并透過細胞膜為細菌所利用。
2.發酵(或酸化)階段
在這一階段,上述小分子的化合物在發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物并分泌到細胞外。這一階段的主要產物有揮發性脂肪酸(簡寫為VFA)、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等。與此同時,酸化細菌也利用部分物質合成新的細胞物質,因此未經酸化廢水厭氧處理時會產生更多的剩余污泥。酸化菌對pH有很大的容忍性,產酸可在pH到4的條件下進行,產甲烷菌則有它自己的最佳pH:6.5~7.5,超出這個范圍則轉化速度將減慢。同時可以查看中國污水處理工程網更多技術文檔。
3.產乙酸產氫階段
在此階段,上一階段的產物被進一步降解為乙酸(又稱醋酸)、氫和二氧化碳,這是最終產甲烷反應的反應底物。
4.產甲烷階段(最高的階段)
產甲烷菌是一種嚴格的厭氧微生物,與其它厭氧菌比較,其氧化還原電位非常低(<-330mV)。
【有機污水處理工藝技術特點】
1、無需曝氣,節省用電。理論上講,好氧曝氣去除1kgBOD需要耗電1.67kWh,而通過厭氧處理,可以節約電耗80%。
2、產生有價值的能源——沼氣。理論上講,厭氧降解1kgCOD可以產生0.4~0.5m3沼氣,每m3沼氣的燃燒熱值大約為23000~27000kJ/ m3,如用于發電,1立方米沼氣可發電1.50~1.80度。
3、產生污泥量少,顆粒污泥同時是有價值的接種產品。通常好氧去除1kgBOD產生0.4kg很難處理的好氧污泥;而厭氧去除1kgCOD只產生0.05kg左右的厭氧污泥,而且無需處理,可以作為有價值的種泥商品。
4、由于合成新生細胞少,合成細胞所需的氮、磷營養鹽也少。好氧反應對氮、磷的需求比例是:BOD:N:P=100:5:1,而厭氧反應對應的比例為:BOD:N:P=300:5:1。
5、處理容積負荷高,占地小。
6、抗沖擊負荷性強。
7、一般好氧法處理氨氮大約在30%左右,而好氧與厭氧結合氨氮的處理能力可以達到80%左右。
雖然厭氧在處理高濃度有機廢水方面具有較大優勢,但是它同時也存在一定的缺點,如運行啟動時間較長,需要較高的管理水平,容易產生臭味,特別是對于規模較小的工業處理工程更是如此。但是在厭氧反應中可以放棄反應時間長、控制條件要求高的甲烷發酵階段,將反應控制在酸化階段,這樣較之全過程的厭氧反應具有以下優點:
(1)由于反應控制在水解、酸化階段反應迅速,故水解池體積小;
(2)不需要收集產生的沼氣,簡化了結構,降低了造價,便于維護;
(3)對于污泥的降解功能完全和消化池一樣,產生的剩余污泥量少。
(4)油脂分子在水解酶作用下生成甘油與脂肪酸,大分子有機物被分解為小分子物質,經水解反應后廢水中的溶解性COD增加,可生化性提高,有利于微生物對基質的攝取,在微生物的代謝過程中減少了一個重要環節,這將加速有機物的降解,為后續生物處理創造更為有利的條件。
因此選擇水解酸化作為生化反應的預處理。為了增加污泥與廢水的接觸面積,提高酸化效果,可在水解池放置軟性填料。(來源:谷騰水網)